Macromolecules

Volume 24, Number 23

November 11, 1991

© Copyright 1991 by the American Chemical Society

Polymerization of (Pentafluorophenyl)acetylene and (p-Butyl-o,o,m,m-tetrafluorophenyl)acetylene and Polymer Properties

Toshio Yoshimura, Toshio Masuda,* and Toshinobu Higashimura*

Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan

Kunio Okuhara and Teruo Ueda

Government Industrial Research Institute, Nagoya, Hirate-cho, Kita-ku, Nagoya 462, Japan

Received January 29, 1991; Revised Manuscript Received June 12, 1991

ABSTRACT: (Pentafluorophenyl)acetylene (F_5PA) and (p-butyl-o,o,m,m-tetrafluorophenyl)acetylene (p-BuF₄PA) were polymerized in high yields in the presence of W catalysts. Poly(F_5PA) was soluble only in C_6F_6 ; its intrinsic viscosity was 0.2–0.6 dL/g. In contrast, poly(p-BuF₄PA) was totally soluble in toluene, CHCl₃, C_6F_6 , etc.; its maximum weight-average molecular weight reached ca. 2 × 10⁶. Both polymers were dark brown solids, whose main-chain structure consisted of alternating double bonds. These polymers were thermally fairly stable in air (their weight loss starts at ~250 °C), amorphous, and electrically insulating. Poly(p-BuF₄PA) was film-forming, and its P_{0_2} and P_{0_2}/P_{N_2} values were 200 barrer and 3.5, respectively.

Introduction

A number of substituted polyacetylenes have been synthesized by using group 5 and 6 transition-metal catalysts.¹ It has recently been found that orthosubstituted derivatives of phenylacetylene (PA) such as

(o-methylphenyl)acetylene² (o-MePA), [o-(trifluoromethyl)phenyl]acetylene³ (o-CF₃PA), and [o(trimethylsilyl)phenyl]acetylene⁴ (o-Me₃SiPA) polymerize with W and Mo catalysts. The poly(o-MePA), poly(o-CF₃PA), and poly(o-Me₃SiPA) obtained have very high molecular weights [weight-average molecular weights (\bar{M}_w) 2 × 10⁵–2 × 10⁶]. This is quite interesting because the \bar{M}_w of poly(PA) itself is usually no more than 3 × 10⁴. These results suggest that the ortho substituents favor the increase of polymer molecular weight owing to its steric effect.

Fluorine-containing polymers have drawn much attention because of their unique properties. Only a few fluorine-containing poly(PA) derivatives, however, have been synthesized; e.g., poly(o-CF₃PA)³ ($\bar{M}_{\rm w} \sim 1 \times 10^6$), poly[1-(pentafluorophenyl)-1-alkynes]⁵ (insoluble in or-

ganic solvents), poly[[2,5-bis(trifluoromethyl)phenyl]acetylene]⁶ (intrinsic viscosity, $[\eta]$, 0.35 dL/g in p-(CF₃)₂C₆H₄).

(Pentafluorophenyl)acetylene⁷ (F_5PA) and (p-butyl-o,o,m,m-tetrafluorophenyl)acetylene⁷ (p-Bu F_4PA) are new

monomer candidates among fluorine-containing phenylacetylenes. They can be regarded as o,o-difluoro-substituted derivatives of PA, and the fluorines are expected to show steric and electronic effects. Thus it is interesting to study their polymerization behavior.

The present paper deals with the polymerization of F₅-PA and p-BuF₄PA. High molecular weight polymers have been successfully obtained from F₅PA and p-BuF₄PA, and the structure and properties of the produced polymers have been determined.

Results and Discussion

Polymerization of F₅**PA.** Table I gives results on the polymerization of F_5PA in the presence of various catalysts. W catalysts produced methanol-insoluble poly(F_5PA)s. Since the polymers formed were soluble only in hexafluorobenzene (C_6F_6), their molecular weights were estimated from their [η] values which can be easily measured. When WCl₆ alone was used as a catalyst, poly(F_5PA) was obtained

Table I Polymerization of F5PA by Various Catalysts

		polymer ^b	
catalyst	monomer convn, %	yield, %	$[\eta],^c dL/g$
WCl ₆	56	55	0.30
WCle-Ph ₄ Sn (1:1)	98	96	0.21
$W(CO)_{\theta}-h\nu^d$	97	92	0.49
MoCl ₅	26	13	
MoCl ₅ -Ph ₄ Sn (1:1)	56	40	0.29
Mo(CO)6-hvd	67	5	
NbCl5e	97	0	
TaCl5e	33	0	
$Ti(OBu)_4-Et_3Al$ (1:4)	89	5 <i>f</i>	
$Fe(acac)_3-Et_3Al$ (1:3)	30	23/	

^a Polymerized in toluene at 30 °C for 24 h; [M]₀ = 0.50 M, [Cat.] = 20 mM. b Methanol-insoluble product. c Intrinsic viscosity measured in C_6F_6 at 30 °C. ^d Polymerized in CCl_4 ; $[M(CO)_6] = 10$ mM. Polymerized at 80 °C. / Insoluble in any solvent.

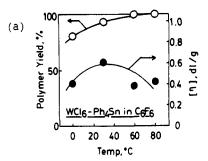
Table II Solvent Effects on the Polymerization of F5PA by WCl6-Ph4Sn (1:1)*

			polymer ^b	
no.	solvent	monomer convn, %	yield, %	$[\eta]$, cdL/g
1	toluene	98	96	0.21
2	C_6F_6	100	93	0.61
3	$m - (CF_3)_2 C_6 H_4$	100	95	0.28
4	CCl ₂ FCClF ₂	100	100	0.25
5	1,4-dioxane	0	0	

^a Polymerized at 30 °C for 24 h; $[M]_0 = 0.50 M$, $[WCl_6] = 20 mM$. ^b Methanol-insoluble product. ^c Intrinsic viscosity measured in C₆F₆ at 30 °C.

with moderate yield, whose $[\eta]$ was $0.3 \,\mathrm{dL/g}$. The catalyst composed of equimolar WCl6 and Ph4Sn (an organometallic cocatalyst1b) yielded a polymer virtually quantitatively but did not increase the $[\eta]$. The catalyst obtained by UV irradiation of the CCl₄ solution of W(CO)₆ achieved a higher $[\eta]$ of around 0.5 dL/g. The polymerization by WCl6-Ph4Sn was finished after about 20 min, being fairly rapid; the polymerizations by WCl₆ alone and W(CO)₆-hv were slower.

The three corresponding Mo catalysts were less active than the W catalysts (Table I). NbCl₅ and TaCl₅, which are effective for the polymerization of disubstituted acetylenes, 1 afforded only methanol-soluble oligomers; the main products were cyclotrimers according to gel permeation chromatography (GPC) and IR spectroscopy. Ziegler catalysts such as Ti(OBu)₄-Et₃Al (1:4) and Fe(acac)₃-Et₃Al (1:3), which are capable of polymerizing primary or secondary alkylacetylenes, produced poly(F5PA)s insoluble in any solvent. Hence, the effect of reaction conditions was examined below by using W catalysts, aiming at the increase of polymer molecular weight.


Effects of solvents on the polymerization of F₅PA were studied with use of a WCl6-Ph4Sn catalyst (Table II). When polymerization was carried out in C_6F_6 , which is the only good solvent of $poly(F_5PA)$, the $[\eta]$ of the polymer considerably increased. Other fluorine-containing solvents such as m-(CF₃)₂C₆H₄ and CCl₂FCClF₂, which partly dissolve this polymer, hardly enhanced the $[\eta]$. It is known that a high molecular weight poly(PA) $(\bar{M}_n \sim 1 \times 10^5)$ is obtained with WCl₆-Ph₄Sn in 1,4-dioxane;⁸ polymerization of F₅PA, however, did not proceed in 1,4-dioxane.

Effects of various organometallic cocatalysts on the polymerization of F5PA by WCl6 were studied with C6F6 as solvent (Table III). The polymer yield more or less increased in the presence of organometallic cocatalysts involving group 4 and 5 main-group metals. The $[\eta]$ value

Table III Cocatalyst Effects on the Polymerization of F₅PA by WCl₆²

		polymer ^b	
cocatalyst	monomer convn, %	yield, %	$[\eta]$, c dL/g
none	56	49	0.33
Ph ₄ Sn	100	93	0.61
n-Bu ₄ Sn	95	64	0.27
Et ₃ SiH	100	90	0.26
Ph_3Bi	59	53	0.29
Ph_3Sb	86	82	0.38
n-BuLi	54	47	0.25
$\mathrm{Et_{3}Al}$	41	21	0.19

 $^{\rm a}$ Polymerized in CeFe at 30 °C for 24 h; [M]0 = 0.50 M, [WCle] = [Cocat.] = 20 mM. $^{\rm b}$ Methanol-insoluble product. ° Intrinsic viscosity measured in CeFe at 30 °C.

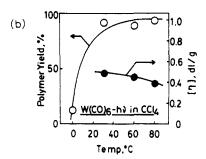


Figure 1. Temperature dependences of the polymerization of $F_5PA(24h, [M]_0 = 0.50M, [WCl_6] = [Ph_4Sn] = 20mM, [W(CO)_6]$ = 10 mM).

clearly increased only when Ph₄Sn was employed as a cocatalyst.

Figure 1 illustrates the effect of temperature on the polymerizations by WCl₆-Ph₄Sn and W(CO)₆- $h\nu$. The polymer yield with WCl6-Ph4Sn as catalyst was fairly high even at 0 °C and quantitative at 60 °C and above. The $[\eta]$ value showed a maximum at 30 °C. Therefore, 30 °C is favorable to obtain high molecular weight poly(F5PA) with this catalyst. On the other hand, the $W(CO)_6-h\nu$ catalyst provided the polymer in about 90% at 30 °C and above, being somewhat less active than WCl6-Ph4Sn. The $[\eta]$ value of the polymer obtained at 30 °C was ca. 0.5 dL/g and decreased slightly with increasing temperature.

Polymerization of p-BuF₄PA. The polymer formed from p-BuF₄PA, which has a long alkyl group, proved to dissolve not only in C_6F_6 but also in many common organic solvents such as toluene and CHCl3. This enabled us to measure the polymer molecular weight by GPC, and it seemed to us that this monomer would behave differently in polymerization owing to the polymer solubility. Hence, its polymerization was also studied in detail. Toluene was used as the polymerization solvent unless otherwise stated.

At first, polymerization was examined in the presence of various catalysts (Table IV). All three W catalysts in the table polymerized p-BuF₄PA in over 90% yields. The poly(p-BuF₄PA)s obtained with WCl₆ and WCl₆-Ph₄Sn possessed $\bar{M}_{\rm w}$'s around 2×10^5 . The W(CO)₆-h ν catalyst

Table IV
Polymerization of p-BuF₄PA by Various Catalysts^a

	monomer convn, %	polymer ^b		
catalyst		yield, %	$ar{M}_{ m w}/10^3{}^{c}$	$\bar{M}_{\rm n}/10^{3~c}$
WCl ₆	100	95	1409	69
WCl ₆ -Ph ₄ Sn (1:1)	100	100	220	110
$W(CO)_6-h\nu^d$	100	91	900	570
MoCl ₅	37	25	83	38
MoCl ₅ -Ph ₄ Sn (1:1)	59	57	230	120
$Mo(CO)_6 - h\nu^d$	13	3		
NbCl ₅ e	100	0		
TaCl5e	92	0		
$Ti(OBu)_4-Et_3Al(1:4)$	100	76 ^f		
$Fe(acac)_3-Et_3Al$ (1:3)	88	85 ^f		

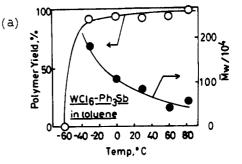
^a Polymerized in toluene at 30 °C for 24 h; [M]₀ = 0.50 M, [Cat.] = 20 mM. ^b Methanol-insoluble product. ^c Determined by GPC. ^d Polymerized in CCl₄; [M(CO)₆] = 10 mM. ^e Polymerized at 80 °C. ^f Partly insoluble in any solvent. ^g [η] = 0.23 dL/g (measured in toluene at 30 °C).

Table V
Cocatalyst Effects on the Polymerization of p-BuF₄PA by
WCl₅²

		monomer convn, %	polymer ^b		
no.	cocatalyst		yield, %	$ar{M}_{ m w}/10^3~c$	$M_{ m n}/10^3~c$
1	none	100	95	140	69
2	Ph₄Sn	100	100	220	110
3	n-Bu₄Sn	100	92	260 ^d	120
4	Et ₃ SiH	100	96	96e	45
5	Ph_3Bi	100	100	400	220
6	Ph ₃ Sb	100	94	850	470
7	n-BuLi	100	100	660	230
8	Et ₃ Al	65	35	200	16

^a Polymerized in toluene at 30 °C for 24 h; $[M]_0 = 0.50 M$, $[WCl_8] = [Cocat.] = 20 mM$. ^b Methanol-insoluble product. ^c Determined by GPC. ^d $[\eta] = 0.47 \text{ dL/g}$. ^e $[\eta] = 0.23 \text{ dL/g}$.

Table VI
Solvent Effects on the Polymerization of p-BuF₄PA by
WCl₆-Ph₃Sb (1:1)^a


		polymer ^b		
solvent	monomer convn, %	yield, %	$ar{M}_{ m w}/10^3c$	$ar{M}_{ m n}/10^3{ m c}$
toluene	100	94	85	47
C_6F_6	94	93	53	20
$m - (CF_3)_2 C_6 H_4$	100	100	63	36
CCl ₂ FCClF ₂	100	90	77	46
1,4-dioxane	27	0		

^a Polymerized at 30 °C for 24 h; $[M]_0 = 0.50 M$, $[WCl_6] = 20 mM$. ^b Methanol-insoluble product. ^c Determined by GPC.

gave a polymer with a high molecular weight up to 9×10^5 . The polymerization by WCl₆–Ph₄Sn was completed in ca. 15 min, being similar to that of F₅PA in reaction rate. Mo catalysts, in contrast, produced polymers in lower yields. NbCl₅ and TaCl₅ afforded only methanol-soluble oligomers. Ziegler catalysts yielded poly(p-BuF₄PA)s partly insoluble in any solvents. It can be said from these results that p-BuF₄PA polymerizes best with W catalysts like F₅PA.

Polymers were obtained in high yields both in the absence and in the presence of cocatalysts except for Et₃-Al (Table V); thus no clear cocatalyst effect is seen with respect to polymer yield. However, the $\bar{M}_{\rm w}$ of the polymer increased by addition of several cocatalysts. Especially, Ph₃Sb increased the $\bar{M}_{\rm w}$ up to ca. 9×10^5 .

Effects of solvents on polymerization were studied with use of the WCl₆-Ph₃Sb catalyst which provides high molecular weight poly(p-BuF₄PA). Polymerization proceeded in high yields not only in toluene but also in fluorine-containing solvents (Table VI). The $\bar{M}_{\rm w}$ of the polymer, however, took the highest value in toluene, and hence there

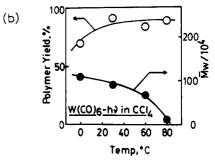
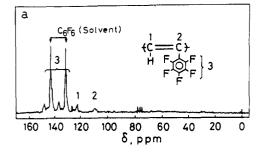


Figure 2. Temperature dependences of the polymerization of $p\text{-BuF}_4\text{PA}$ (24 h, [M]₀ = 0.50 M, [WCl₆] = [Ph₃Sb] = 20 mM, [W(CO)₆] = 10 mM).

is no advantage in using fluorine-containing solvents for this monomer.


Figure 2 shows the effect of temperature on the polymerizations by WCl₆-Ph₃Sb and W(CO)₆- $h\nu$. The polymer yield with WCl6-Ph3Sb was almost quantitative at -30 °C and above, indicating a high activity of this catalyst. The $\bar{M}_{\rm w}$ of poly(p-BuF₄PA) sharply increased with decreasing temperature. Eventually, the $\bar{M}_{\rm w}$ reached ca. 2×10^6 at -30 °C. In the case of the W(CO)₆- $h\nu$ catalyst, a polymer formed in over 70% yield at 0 °C and above. The $\bar{M}_{\rm w}$ of the polymer at 0 °C was about 1 × 106 and decreased with increasing temperature. It is noted that p-BuF₄PA is polymerizable at lower temperature, as compared with F_5PA . The highest \bar{M}_n values of poly(p-BuF₄PA) obtained in Figure 2 are estimated to be 5 × $10^5-1 \times 10^6$ from the $\bar{M}_{\rm w}/\bar{M}_{\rm n}$ ratios in Tables IV and V. This means that the concentration of the propagating species is no more than $1/50^{-1}/100$ that of the catalysts.

Polymerization of substituted acetylenes by group 5 and 6 transition-metal catalysts, including the polymerization in the present study, is thought to proceed via the metal carbene owing to the following reasons: (i) metal carbenes initiate the polymerization; ^{9a} (ii) linear olefins serve as chain-transfer agents; ^{9b} (iii) random copolymerization of PA with norbornene is possible. ^{9c} A recent study has achieved the living polymerization of $p\text{-BuF}_4\text{PA}$ by using a three-component catalyst composed of MoOCl₄, $n\text{-Bu}_4\text{-Sn}$, and EtOH (mole ratio 1:1:0.5); ¹⁰ $\bar{M}_n \propto \text{conversion}$, polydispersity ratio 1.1–1.2.

Polymer Structure. The analytical data of poly(F₅-PA) and poly(p-BuF₄PA) did not depend on the polymerization conditions. The data stated below have been obtained with the polymer samples from Table II, no. 2 (catalyst: WCl₆-Ph₄Sn), and Table V, no. 6 (catalyst: WCl₆-Ph₃Sb).

The elemental analysis data of poly(F_5PA) and poly-(p-BuF₄PA) agreed well with their theoretical values. Poly-(F_5PA). Calcd for (C_8HF_5)_n: C, 50.02; F, 49.45. Found: C, 49.85; F, 49.22. Poly(p-BuF₄PA). Calcd for ($C_{12}H_{10}F_4$)_n: C, 62.61; H, 4.38; F, 33.01. Found: 62.35; H, 4.19; F, 33.01.

IR spectral data of the polymers are as follows. Poly-(F₅PA): IR (KBr pellet) 1650 (m), 1490 (vs), 1100 (s), 990

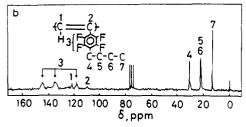


Figure 3. 13C NMR spectra of poly(F5PA) (C6F6 solution) and poly(p-BuF₄PA) (CDCl₃ solution).

(s), 895 (s) cm⁻¹. Poly(p-BuF₄PA): IR (KBr pellet) 2950 (m), 2860 (m), 1490 (vs), 1100 (m), 980 (s), 910 (m) cm⁻¹. While both monomers (F₅PA and p-BuF₄PA) showed bands at 3350 cm⁻¹ due to ≡CH, these bands are absent in the polymers. Strong absorptions characteristic of C-F stretching were present at ca. 1000 cm⁻¹ in both monomers and polymers.

In the ¹³C NMR spectra of monomers were observed two acetylenic carbons at δ 68.1 and 89.9 (F₅PA) and at δ 69.2 and 88.9 (p-BuF₄PA). Instead, two olefinic carbons appear at δ 111.1 and 124.4 (F₅PA) and at δ 112.5 and 124.5 (p-BuF₄PA) in the polymers (Figure 3).

The ¹H NMR spectra of poly(F₅PA) and poly(p-BuF₄-PA) exhibited rather broad signals of olefinic proton at δ 8.0-6.8 (F_5PA) and at δ 7.3-6.6 (p-Bu F_4PA). Besides, aliphatic protons (δ 3.0-0.8) were seen in the ¹H NMR spectrum of poly(p-BuF₄PA). No other unexpected protons appeared. The ¹³C NMR and ¹H NMR spectra of $poly(F_5PA)$ and $poly(p-BuF_4PA)$ obtained with Mo catalysts were virtually identical to those with W catalysts.

The IR, ¹³C NMR, and ¹H NMR spectra thus support the idea that the polymers possess alternating double bonds in the main chain as shown in Figure 3. No information about the geometric structure of the main chain, however, could be obtained from these spectra

In the UV-visible spectra of $poly(F_5PA)$ and poly(p-BuF₄PA), absorption maxima are seen at 380 nm (ϵ_{max} 5200 M^{-1} cm⁻¹) and 430 nm (ϵ_{max} 5300 M^{-1} cm⁻¹), respectively, while that the poly(PA) is below 300 nm (Figure 4). Other ortho-substituted poly(PA)s such as poly(o-MePA),2 poly(o-CF₃PA),3b and poly(o-Me₃SiPA)4 show absorption maxima above 450 nm. Thus it seems a general tendency that introduction of ortho substituents into poly(PA) brings about red shifts of the absorption maximum. This, however, does not agree with the idea that if the ortho substituent hampers the conjugation between the main chain and phenyl group, then the maxima should shift to shorter wavelengths by ortho substitution; the cause why ortho substituents give rise to the red shift is not clear at present.

The data of X-ray diffraction analysis ($Cu K\alpha$ radiation) are as follows: poly(F_5PA), 2θ ($\Delta 2\theta/2\theta$) = 8.0° (0.288), 9.8° (0.204), 12.5° (0.248), 25.4° (0.181); poly $(p-BuF_4PA)$, $2\theta \left(\Delta 2\theta/2\theta\right) = 5.7^{\circ} (0.772), 8.8^{\circ} (0.420), 24.1^{\circ} (0.232).$ These

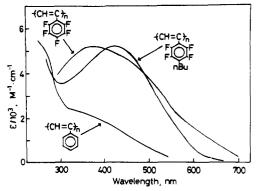


Figure 4. UV-visible spectra of poly(F₅PA), poly(p-BuF₄PA), and poly(PA) (measured in C_6F_6 [poly(F_5PA), poly(p-BuF₄PA)] or in THF [poly(PA)]).

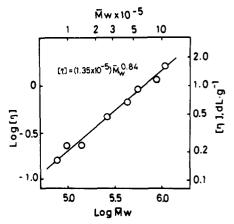


Figure 5. $[\eta]$ vs \bar{M}_w plot for poly $(p\text{-BuF}_4\text{PA})$ (samples with polydispersity ratios of around 2.5 were used; $[\eta]$ measured in toluene at 30 °C, and $\bar{M}_{\rm w}$ determined by GPC).

data show the presence of only broad peaks, leading to a conclusion that the present polymers are amorphous.

Polymer Properties. Both poly(F₅PA) and poly(p-BuF₄PA) have the form of dark brown solid irrespective of polymerization conditions. Properties of these polymers are described below; the samples used are from Table II, no. 2, and Table V, no. 6, unless otherwise stated.

Poly(F₅PA) completely dissolved only in C₆F₅ and partly dissolved in CCl_2FCClF_2 and m- $(CF_3)_2C_6H_4$. Its nonsolvents include benzene, toluene, cyclohexane, CCl4, and CHCl₂. These solubility properties are in sharp contrast to those of poly(PA), which is insoluble in C_6F_6 and soluble in toluene, CHCl₃, etc. Poly(p-BuF₄PA), on the other hand, is soluble in many organic solvents such as benzene, toluene, hexane, CCl4, CHCl3, tetrahydrofuran, acetone, ethyl acetate, C₆F₆, etc.; this excellent solubility is attributable to the p-n-butyl group.

A logarithmic plot of the $[\eta]$ vs \bar{M}_w of poly $(p\text{-BuF}_4\text{PA})$ is shown in Figure 5. The plot can be represented by a good linear relationship, leading to the following equation:

$$[\eta] = K \tilde{M}_{w}^{a} \quad (K = 1.35 \times 10^{-5} \quad a = 0.84)$$

The value of exponent a is relatively close to those of poly- $(o-CF_3PA)^{3a}$ (a = 0.59) and poly(o-Me₃SiPA)⁴ (a = 0.76) and not so large as those for disubstituted acetylene polymers¹ [e.g., $(-CCH_3=CSi(CH_3)_3-)$, a = 1.04; (-CCl=CPh-), a = 1.07]. This is probably because monosubstituted acetylene polymers assume less expanded conformations in solution than do disubstituted acetylene polymers.

A tough, free-standing film is accessible from poly(p-BuF₄PA) by casting its toluene solution as in the cases of

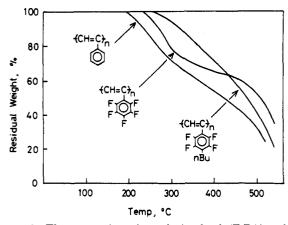


Figure 6. Thermogravimetric analysis of poly(F₅PA), poly(p-BuF₄PA), and poly(PA) (measured in air at a heating rate of 10 °C/min).

poly(o-CF₃PA) and poly(o-Me₃SiPA). In contrast, the film of poly(F_5PA) is rather brittle, and poly(PA) is too brittle to form a film. The film-forming property of poly(p-BuF₄-PA) is attributable to its high molecular weight.

Poly(F₅PA) and poly(p-BuF₄PA) began to lose weight at about 240 and 260 °C, respectively, in thermogravimetric analysis (TGA) in air (Figure 6). These temperatures are higher than that of poly(PA)11 (200 °C) and lower than those of poly(o-CF₃PA)^{3b} (300 °C) and poly-(o-Me₃SiPA)⁴ (280 °C). None of these ortho-substituted poly(PA)s suffers any molecular weight decrease or oxidation even though they are left in air at room temperature ove a few months, while poly(PA) gradually undergoes a molecular weight decrease owing to oxidative degradation. Thus ortho substituents prove effective in enhancing the stability of poly(PA).

The mechanical properties of $poly(p-BuF_4PA)$ are as follows: 12 Young's modulus 530 MPa, tensile strength 21 MPa, elongation at break 8.1% at 25 °C; glass transition temperature (by dynamic viscoelasticity) 110 °C. These data show that poly(p-BuF₄PA) is hard and rather brittle.

The electrical conductivities of poly(F₅PA) and poly- $(p-BuF_4PA)$ at 25 °C were 1×10^{-16} and 2×10^{-16} S·cm⁻¹, respectively; i.e., these polymers are typical insulators like poly(PA), poly(o-CF₃PA), and poly(o-Me₃SiPA).

The data of electron spin resonance (solid state; power level 1 mW) are as follows: poly(F₅PA) singlet (line width 5.8 G, g value 2.0028), spin density 5.6×10^{18} g⁻¹; poly(p-BuF₄PA) singlet (line width 9.9 G, g value 2.0027), spin density 2.0×10^{17} g⁻¹. The spin densities of poly(o-CF₃-PA) and poly(o-Me₃SiPA) are 6.1×10^{17} and 7.3×10^{17} g⁻¹, respectively. 3b,4 Further, the values of polyacetylene, poly-(PA), and disubstituted acetylene polymers with bulky groups are 10^{18} – 10^{19} , 10^{16} – 10^{17} , and $<10^{15}$ (i.e., lower than detection limit) g-1, respectively.1b Thus the present polymers as well as other ortho-substituted poly(PA)s possess fairly high concentrations of unpaired electron.

The oxygen permeability coefficient (P_{O_2}) of a poly(p-BuF₄PA) membrane at 25 °C was 200 barrer (1 barrer = 1×10^{-10} cm³ (STP)·cm·cm⁻²·s⁻¹·cmHg⁻¹), and the separation factor of oxygen and nitrogen (P_{0_2}/P_{N_2}) was 3.5. This P_{0_2} value is about 1/2 that of poly(dimethylsiloxane), being very large among those of glassy polymers. 13 Further, the fairly large separation factor may be associated with the affinity between fluorine and oxygen.

Experimental Section

Materials. The monomers were prepared by Okuhara's method7 (Scheme I); i.e., F₅PA and p-BuF₄PA were prepared by addition of 2 and 3 equiv, respectively, of n-butyllithium to ether

solutions of C₆F₅CF=CCl₂, which in turn was prepared by portionwise addition of cooled ethereal pentafluorophenyllithium to a solution of 1,1-dichloro-2,2-difluoroethylene in ether. Experimental details of these preparations will be described elsewhere. 7a C₆F₅CF=CCl₂: yield 66%. F₅PA: yield 63%; purity >99% [gas chromatography (GC)]; bp 66 °C (95 mmHg); d_4^{20} 1.435. p-BuF₅PA: yield 86%; purity 98.3% (GC); bp 80 °C (5 mmHg); d_4^{20} 1.162.

Transition-metal compounds and organometallic cocatalysts were all commercially obtained and used without further purification; care was taken that they would not be decomposed by moisture and/or air. Solvents for polymerization were purified by the standard methods.

Polymerization. Polymerizations were performed in prebaked glass vessels under dry nitrogen. Catalyst systems composed of a transition-metal chloride and an organometallic cocatalyst were allowed to stand (age) in solution at 30 °C for 15 min before use. Metal carbonyl based catalysts were prepared by irradiation of CCl4 solution of a metal carbonyl with UV light (200-W high-pressure Hg lamp, distance 5 cm) at 30 °C for 1 h.

The following polymerization procedure is exemplary (see Table II, no. 2, for the result): In a Schlenk tube equipped with a three-way stopcock, a monomer solution was prepared by mixing F_5PA (3.0 mmol, 0.58 g, 0.40 mL), chlorobenzene (0.10 mL; internal standard for $\bar{G}C$), and C_6F_6 (1.90 mL). In another Schlenk tube, WCl₆ (0.10 mmol, 40 mg) and Ph₄Sn (0.10 mmol, 43 mg) were dissolved in C_6F_6 (3.0 mL), and this catalyst solution was aged at 30 °C for 15 min. Then 2.0 mL of the monomer solution was added to the catalyst solution. After polymerization at 30 °C for 24 h, the reaction was quenched by addition of a mixture (5 mL) of CCl_2FCClF_2 and methanol (4:1 volume ratio). Monomer conversion was determined by GC (silicone DC550 3 m, 90 °C). The reaction mixture was diluted with CCl₂FCClF₂ (10 ml) and poured into methanol (1 L) under stirring. The precipitated polymer was washed with methanol, filtered, and dried to a constant weight. Polymer yield determined by gravim-

Characterization. Intrinsic viscosities ($[\eta]$) of polymers were measured in C_6F_6 [poly(F_5PA)] or in toluene [poly(p-BuF₄PA)] at 30 °C by using a Ubbelohde-type viscometer in the concentration (c) range 0.1-0.4 g/dL. The plots of η_{ap}/c vs c were all

Molecular weights of poly(p-BuF₄PA) were determined by GPC with use of a polystyrene calibration. GPC curves were observed with a Jasco Trirotar liquid chromatograph [eluent, CHCl₃; columns, Shodex A805, A806, and A807 polystyrene gels (Showa Denko, Co., Japan)]. Monodisperse polystyrene samples with $\bar{M}_{\rm n}$'s of 1.1×10^5 , 3.0×10^5 , 6.5×10^5 , 1.8×10^6 , 2.0×10^6 , 3.8 \times 106, 6.8 \times 106, and 2.0 \times 107 were used for calibration. A liquid chromatograph equipped with columns of Shodex A802, A803, and A804 was used for the analysis of oligomeric products.

¹³C NMR spectra were observed with a JEOL FX90Q spectrometer. IR spectra and UV-visible spectra were recorded with Shimadzu IR435 and UV190 spectrophotometers, respectively. Other analyses were carried out as described before. 2,3b,4

Acknowledgment. We thank Professor T. Kawamura for the meausrement of ESR and Dr. T. Hashimoto for the measurement of X-ray diffraction. This research was partly supported by the Grant-in-Aid for Scientific Research on Priority Areas "New Functionality Materials—Design, Preparation and Control" from the Ministry of Education, Science and Culture, Japan (No. 02205068).

References and Notes

- For reviews, see: (a) Costa, G. In Comprehensive Polymer Science; Allen, G., Ed.; Pergamon: Oxford, 1989; Vol. 4, Chapter 9. (b) Masuda, T.; Higashimura, T. Adv. Polym. Sci. 1986, 81, 121
- (2) Abe, Y.; Masuda, T.; Higashimura, T. J. Polym. Sci., Polym. Chem. Ed. 1989, 27, 4267.
- (3) (a) Muramatsu, H.; Ueda, T.; Ito, K. Macromolecules 1985, 18, 1634.
 (b) Masuda, T.; Hamano, T.; Higashimura, T.; Ueda, T.; Muramatsu, H. Macromolecules 1988, 21, 281.
- Muramatsu, H. Macromolecules 1988, 21, 281.
 (4) Masuda, T.; Hamano, T.; Tsuchihara, K.; Higashimura, T. Macromolecules 1990, 23, 1374.
- (5) Yoshimura, T.; Masuda, T.; Higashimura, T.; Ishihara, T. J. Polym. Sci., Polym. Chem. Ed. 1986, 24, 3569.

- (6) Tsuchihara, K.; Masuda, T.; Higashimura, T.; Nishida, M.; Muramatsu, H. Polym. Bull. 1990, 23, 505.
- (7) (a) Okuhara, K. Bull. Chem. Soc. Jpn., to be published. (b) Okuhara, K. J. Org. Chem. 1976, 41, 1487.
- (8) Masuda, T.; Takahashi, T.; Yamamoto, K.; Higashimura, T. J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 2603.
- (a) Katz, T. J.; Lee, S. J. J. Am. Chem. Soc. 1980, 102, 422.
 (b) Masuda, T.; Kouzai, H.; Higashimura, T. J. Chem. Soc., Chem. Commun. 1991, 252.
 (c) Masuda, T.; Yoshida, T.; Makio, H.; Rahman, M. Z. A.; Higashimura, T. J. Chem. Soc., Chem. Commun. 1991, 503.
- (10) Mishima, K.; Fujimori, J.; Masuda, T.; Higashimura, T.; Nishida, M.; Okuhara, K.; Muramatsu, H. Polym. Prepr. Jpn. 1989, 38 (6), 1745.
- (11) Masuda, T.; Tang, B.-Z.; Higashimura, T.; Yamaoka, H. Macromolecules 1985, 18, 2369.
- (12) Tang, B.-Z.; Masuda, T.; Tanaka, A.; Higashimura, T., unpublished data.
- (13) Pauly, S. In Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E. H., Eds.; Wiley: New York, 1989; p VI/435.